Развитие специальной выносливости у футболистов, часть 1.

Оглавление

ВВЕДЕНИЕ

I. ОБЗОР ЛИТЕРАТУРЫ

1.1. Общие особенности морфофункциональной специализации организма в условиях спортивной деятельности   

1.2. Общая характеристика выносливости

1.3. Виды выносливости

1.3.1. Типы специальной выносливости

1.3.2. Критерии и методы оценки выносливости

1.3.3. Факторы, определяющие развитие выносливости    

1.4. Средства и методы развития выносливости

1.5. Средства и методы развития специальной выносливости 

1.6.Методика воспитания выносливости

1.7.Методика воспитания специальной выносливости

II. ОРГАНИЗАЦИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1. Организация исследования

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Актуальность: выносливость - одно из важнейших физических ка­честв в абсолютном большинстве видов спорта. В современном футболе специальная выносливость - ведущих звено в структуре физической подготовленности футболистов. Поскольку на высоком уровне техническое и тактическое мастерство велико, и примерно равно, именно специальная выносливость во многом определяет исход встречи. Тем не менее, в последнее время сформировалось мнение, что в футболе успех определяет в первую очередь техника работы с мячом и скорость. Можно сразу доказать ошибочность этого мнения, в таком виде спорта как футбол нужно развивать все физические качества, однако еще недавно специалисты в области футбола (да и сами футболисты) осознали: что специальной выносливости нужно отдавать предпочтение как доминирующему физическому качеству, на высоком уровне[13].

Игрок на протяжении всего матча выполняет специфические игро­вые действия, качество которых зависит от степени утомления спортсмена. Чем выше уровень развития специальной выносливости у футболиста, тем меньше он совершает ошибок в игровых ситуациях на фоне усталости.

I. ОБЗОР ЛИТЕРАТУРЫ

1.1 Общие особенности морфофункциональной специализации организма в условиях спортивной деятельности

Организм человека обладает уникальными свойствами, выработав­шимися в процессе его биологической эволюции, функциональной универсальностью и приспособительной активностью. Двигательная деятельность человека, какой бы качественной формой работоспособности она ни требовала, осуществляется одним и тем же имеющимся у него набором мышечных групп, регулируется одними и теми же центральными и периферическими механизмами, функционально и энергетически обеспечи­вается одними и теми же физиологическими системами организма. Такая функциональная универсальность позволяет человеку решать любую двигательную задачу, возникающую в самых разнообразных жизненных ситуациях, и обходиться при этом оптимально минимизированным, но чрезвычайно гибким составом рабочих механизмов. Последние обладают широким диапазоном моторных возможностей, обеспечивающих осуществ­ление тонких и разнообразных рабочих операций и выполнение работы с проявлением при этом необходимых усилий или длительным сохранением ее производительного эффекта[7].

Наряду с функциональной универсальностью организм обладает и широкими приспособительными возможностями, заложенным и в исключительной пластичности его физиологических функций. В ее основе лежат такие свойства, как реактивность и суперкомпенсация. Организм всегда находится в состоянии активного взаимодействия с внешней средой. Он реагирует на любые возникающие в ней изменения соответствующими изменениями своего состояния. Благодаря такой реактивности обеспечива­ется подвижная приспособительная перестройка внутренних и внешних отношений организма, сохраняются динамическая устойчивость и постоянство всех его физиологических отправлений. Тем самым организм получает возможность нейтрализовать случайные изменения внешней среды и сохраняться в ней как относительно независимая и функционально целостная система.

Активный характер приспособительных возможностей выражается в способности организма к суперкомпенсации энергетических ресурсов, затрачиваемых на осуществление актов жизнедеятельности в тех случаях, если они превышают привычную норму. Иными словами, затраты на гиперфункцию восстанавливаются с избытком за счет усиленного синтеза использованных энергобогатых субстратов и разрушенных структурных белков[21 ].

Таким образом, в результате целенаправленной и регулярной тре­нировки организм может, активно реагируя на внешние воздействия, избирательно повышать свои рабочие возможности и количественно развивать ту форму специфической работоспособности, которая обусловлена конкретной двигательной деятельностью и преимущественно определяет ее успех.

Рассмотренные выше свойства организма и составляют суть физиологического механизма, лежащего в основе его морфофункциональной специализации (МФО) в ходе многолетней тренировки и как следствие повышения его специальной работоспособности. МФС захватывает весь организм в целом. Однако в наибольшей мере и в первую очередь это касается тех мышечных групп, которые несут основную рабочую нагрузку, и тех физиологических систем, которые в большей степени обеспечивают их работоспособность. Такой избирательный характер функциональной специализации обусловлен главным образом режимом работы организма в условиях данной спортивной деятельности, а степень его выраженности - интенсивностью и объемом тренирующих воздействий.

Наиболее широким функциональным диапазоном и приспособи­тельным резервом обладают скелетные мышцы - основной исполнитель физической работы. Они способны сокращаться быстро, развивать и поддерживать значительные усилия, работать длительное время и существенно повышать эти способности под влиянием тренировки[10].

Граевская Н.Ф и Долматова Т.И выделяют три основных функцио­нальных профиля мышц, формирующихся в результате систематической тренировки. Чем большую и более длительную нагрузку несет мышца, тем выше в ней возможности дыхательного ресинтеза АТФ (активность окислительных ферментов и интенсивность дыхания мышц) и тем лучше условия для его обеспечения (большее число митохондрий, более высокое содержание миоглобина). Для мышц, которым свойствен резкий переход от покоя к интенсивной кратковременной работе характерны высокая АТФ-азная активность, значительное содержание КрФ и большие возможности гликолиза. Наконец, для мышц, развивающих большие силовые напряжения, также свойственны большая активность АТФ-азы и высокое содержание миозина и миоглобина.

Под влиянием тренировки изменяется белковый состав вещества мышц. В генном аппарате мышечного волокна имеются «образцы» структуры всех содержащихся в мышце белков - структурных и ферментативных. Однако часть их может быть выключена из активной деятельности. Тем самым ограничиваются возможности синтеза какого-либо из белков (обычно ферментативных) или он совсем не будет синтезироваться. Но под воздействием функции трофических влияний нервной системы или других условий такое «выключение» может быть снято, и тогда мышца сможет синтезировать белок, который раныне не синтезировала, или увеличивать объем синтеза того или иного белка.

Для МФС организма в ходе многолетней тренировки характерны два взаимосвязанных процесса - развитие в требуемом направлении функциональных возможностей локомоторного аппарата и физиологических систем, поддерживающих его повышенную двигательную активность, и формирование такого целесообразного взаимодействия между всеми функционально активными системами, которое обеспечивает высокий уровень его специальной работоспособности[5].

В процессе МФС организма ярко выраженные приспособительные сдвиги приобретают те мышечные группы и те физиологические системы, на долю которых приходится основная тяжесть работы. Вместе с тем функциональное совершенствование организма в целом выражается в развитии таких специфических моторных свойств, которые прежде всего необходимы для успеха конкретной спортивной деятельности. Таким образом, речь идет о специализации организма по органу и по способности. С ростом спортивного мастерства специализация по органу становится все более выраженной, а специализация по способности все более конкретной и специфичной.

Следующая особенность многолетнего процесса МФС связана с оп­ределенной гетерохронностью в развитии приспособительных перестроек организма. Это проявляется, во-первых, в несовпадении во времени моментов, соответствующих началу интенсивного совершенствования отдельных функциональных показателей, и во-вторых, в определенной последовательности развивающихся приспособительных перестроек. Причина такого явления связана с постепенным повышением интенсивности режима работы организма, что требует мобилизации тех его потенциальных возможностей, которые способны это обеспечить[7].

Второй из двух характерных для МФС организма процессов выра­жается, как говорилось выше, в формировании целесообразного и устойчивого способа межсистемных отношений в организме, обеспечиваю­щего максимально доступный (при данном состоянии) уровень его специальной работоспособности. Это относится ко всем без исключенияжизнеобеспечивающим системам, но прежде всего к локомоторной и вегетативной, т. е. к взаимодействию между режимом работы мышц, включающихся при выполнении движения, с одной стороны, и обеспечи­вающими его механизмами дыхания, кровообращения и энергетики с другой. Здесь в первую очередь следует обратить внимание на различные уровни реактивности (при непосредственном выполнении мышечной работы) и адаптационной инертности (в процессе долговременной адаптации) мышечной и вегетативных систем. В первом случае мышечная система более лабильная, она быстрее мобилизуется и активизирует менее лабильный аппарат нервной регуляции вегетативных функций. Однако в процессе длительной тренировки мышечная система может обнаружить большую адаптационную инертность, чем вегетативные функции, в связи с более медленно развивающимися морфологическими перестройками в мышцах. Несоответствие между функциональными возможностями локомоторной и вегетативных систем ограничивает прогресс специальной работоспособности спортсмена. Это следует особо подчеркнуть, поскольку исключение такого несоответствия является важнейшей задачей специальной физической подготовке (СФП).

Таким образом, ведущая роль в формировании межсистемных от­ношений в организме и развитии адаптационного процесса в условиях напряженной мышечной деятельности принадлежит локомоторной системе, точнее режиму ее эксплуатации. Локомоторная система подчиняет своим потребностям вегетативные и другие физиологические системы, создавая в организме общую господствующую установку, ориентированную на мобилизацию его моторного потенциала для решения двигательной задачи. Такое представление вполне соответствует функционально-структурному принципу рассмотрения сложных поведенческих актов [7].

Концепции функциональной системы представляется как объеди­нение различно локализованных структур и процессов для получения определенного конечного приспособительного эффекта, обеспечивающего достижение намеченной цели. Абстрактная модель законченного рабочего акта организма, в которую включены категории цели, средства и результата, является основой концепции функциональной системы. Цель действия выступает в качестве исходного и узлового пункта системной деятельности организма, а ее возникновение представляет собой критический момент в развитии поведенческого акта.

Плодотворное развитие функционального принципа доминанты применительно к мышечной деятельности можно найти в концепциях «энергетического правила скелетной мускулатуры» и моторно-висцеральных рефлексов. Согласно этим концепциям в условиях двигательной деятельности состояние различных органов и систем находится в тесной связи с активностью скелетных мышц. Если управление мышечной деятельностью осуществляется произвольно, то вегетатика регулируется на непроизвольной, рефлекторной основе. Движение, возбуждая проприоцептивные импульсы, определяет активность вегетативных систем, что обеспечивает единство организма в действии, формирует и регулирует согласованность всех его систем.

Такая интегративная особенность в полной мере присуща и процессу МФС организма в ходе многолетней тренировки, что выражается в формировании специализированной функциональной структуры работоспо­собности спортсмена (Ю. В. Верхошанский) [5]. Интенсивная эксплуатация локомоторной системы, требуя соответствующего функционального и энергетического обеспечения, создает в организме общую главенствующую установку, определяющую направление и величину приспособительных перестроек и целесообразную межсистемную регуляцию всех его физиоло­гических составляющих. Такая установка может рассматриваться как особая форма доминанты, носящая, однако, неслучайный, порожденный текущим моментом характер. Будучи сформированной в процессе систематической и длительной тренировки, она обладает динамической устойчивостью и надежной воспроизводимостью в тех условиях, для которых она предназна­чена, и в тот момент, когда в ней возникает необходимость.

Таким образом, специализированная функциональная структура - это устойчивая форма межсистемных отношений в организме, которая обеспечивает максимальный уровень специфической работоспособности спортсмена в конкретных условиях соревновательной деятельности. Ее формирование связано с выведением физиологических систем на высокий уровень функциональных возможностей, фиксированный на основе соответствующих морфологических перестроек, и включено в процесс долговременной адаптации организма к напряженной мышечной деятельно­сти. Важнейшие характеристики специализированной функциональной структуры заключаются в ее готовности к мобилизации, быстром выведении на высокий рабочий режим всех физиологических систем с учетом их роли в осуществлении мышечной деятельности, стабильности воспроизведения в условиях повторного решения двигательной задачи[2].

Понятие «специализированная функциональная структура» претен­дует на роль теоретической схемы, объясняющей физиологический механизм обретения и повышения специфической работоспособности спортсмена на основе избирательной МФС его организма. Это понятие развивает концепцию функциональной системы П. К. Анохина применительно к напряженной мышечной деятельности, имеет с ней определенную общность, но вместе с тем и существенные различия.

Концепция функциональной системы (по П. К. Анохину) объясняет процесс организации поведенческого акта в целом - в смысле его подготовки, реализации и оценки достигнутого результата. Функциональная система носит временный, отвечающий требованиям текущего момента характер, представленный такими взаимосвязанными элементами, как доминирующая мотивация, память и пусковой стимул [27].

Афферентный синтез - один из центральных элементов функцио­нальной системы, определяющий приспособительный эффект поведения на основе решения трех вопросов: что делать? как делать? и когда делать? Функциональная система формируется для осуществления любого поведенческого акта и становится неактивной после достижения его цели. Она запоминается организмом в виде модели межсистемных связей главным образом при выработке навыка к многократному воспроизведению поведенческого акта. В этом случае она не только формирует действие, но и выступает в качестве критерия для оценки его результата. Специализиро­ванная функциональная структура в отличие от функциональной системы не является универсальным механизмом. Она формируется для конкретного вида мышечной деятельности, высоко специфична и определяет прежде всего физическую работоспособность организма, требующую предельного напряжения его функций. Для нее характерен длительный процесс формирования в результате целенаправленной тренировки, развивающейся на основе избирательного совершенствования функциональных возможно­стей тех физиологических систем, которые преимущественно привлекаются к обеспечению мышечной деятельности [32]. И наконец, если в качестве системообразующего фактора для функциональной системы выступает цель, ради которой она существует и после достижения которой перестает существовать, то в качестве системообразующего фактора для специализи­рованной функциональной структуры выступает режим работы организма в условиях спортивной деятельности. Причем структура межсистемных отношений не просто фиксируется в памяти организма с тем, чтобы быть извлеченной оттуда по мере надобности; она становится генеральным функциональным свойством, знаменующим новое качественное состояние организма, не только определяющим его возможности в экстремальных условиях соревновательной деятельности, но и влияющим на всю его двигательную активность в повседневной жизни[21].

Итак, МФС организма в процессе многолетней тренировки опреде­ляется условиями тренировочной и соревновательной деятельности. Несмотря на их специфические особенности в каждом отдельном виде спорта, качественные характеристики МФС организма имеют и общие признаки, присущие тем или иным группам видов спорта. Выявление таких признаков МФС организма представляется важным для рассмотрения проблемы двигательных способностей спортсмена. Однако прежде чем говорить о формах МФС, обратимся к понятиям «быстрота» и «скорость», используемым для качественной характеристики класса движений человека, требующих минимальных затрат времени. Постановка такого, может быть неожиданного на первый взгляд, вопроса имеет тем не менее принципиальное значение, поскольку в специальной литературе быстрота и скорость выступают обычно как синонимы, что сильно осложняет, если не сказать запутывает, практическое решение не только проблемы СФП, но и проблемы организации тренировочного процесса в целом.

Нетрудно представить, что для решения двигательной задачи, тре­бующей минимальных затрат времени, принципиально возможны два различных типа условий. В одном из них, когда нет необходимости в значительных усилиях и энергозатратах, это достигается в основном за счет оперативности (быстроты) формирования двигательной программы в моторной зоне ЦНС и ее реализации. Например, для того чтобы поймать сидящую муху, не требуется больших мышечных усилий или энергозатрат. Каждый знает, что для этого необходимо всего лишь молниеносное и точное движение, опережающее бдительность мухи. В другом случае, когда преодолевается значительное внешнее сопротивление или работа носит длительный характер, необходимы большие мышечные усилия или емкие источники энергообеспечения. Например, штангу одного веса быстрее поднимет более сильный атлет, а из пункта А в пункт В быстрее дойдет более выносливый турист [23].

Важно отметить, что функциональные возможности организма, не­обходимые в одном случае, могут не играть никакой роли во втором, и наоборот. Отсюда принципиально важно не смешивать эти случаи и разграничивать их не только понятийно, но и по существу их физиологиче­ской природы. И если использовать традиционную терминологию, то в первом случае имеет смысл говорить о быстроте как специфическом функциональном свойстве психомоторики спортсмена, во втором - о скорости движений (перемещений) как об интегральном показателе специальной тренированности спортсмена, определяемой целым рядом факторов.

Теперь вспомним, что специальная работоспособность спортсмена проявляется не только в движениях, т. е. в изменениях положения тела или его звеньев в пространстве. Отбор мяча, подкат, скоростной дриблинг и т. п. это тоже формы проявления специальной работоспособности спортсмена, требующие соответствующей МФС организма.

Таким образом, во всем многообразии двигательного содержания спортивной деятельности правомерно выделить два основных класса проявлений моторной функции. Один из них объединяет все разнообразие двигательных действий, т. е. рабочих операций, характеризующихся изменением положения тела или его звеньев в пространстве и времени и осуществляемым динамическим режимом работы мышц. Другой класс включает статические действия, в которых нет видимого движения и физиологическая работа осуществляется при изометрическом сокращении мышц. В двигательном составе спортивного упражнения эти классы моторной активности тесно увязаны и рационально взаимодействуют[22].

Общая характеристика выносливости

Выносливость можно охарактеризовать как способность организма противостоять утомлению.

Выносливость — физическое качество, необходимое в той или иной степени в каждом виде спорта. В одних видах спорта и упражнениях выносливость непосредственно определяет результат (ходьба, бег на средние и длинные дистанции, велогонки, конькобежный спорт — длинные дистанции, лыжные гонки и др.), в других — она позволяет лучшим образом выполнить определенные тактические действия (бокс, борьба, спортивные игры и т. п.) и, наконец, в третьих, где упражнение кратковременно и на первый взгляд необходимости в выносливости не существует, она помогает длительно переносить высокие тренировочные нагрузки и обеспечивает быстрое восстановление сил организма между тренировками (метания, прыжки, спринтерский бег, тяжелая атлетика и пр.) [29].

В практике различают общую выносливость и специальную выносливость.

Общая выносливость — способность длительно проявлять мышечные усилия сравнительно невысокой интенсивности (легкоатлетиче­ский бег и бег на коньках на дистанциях 5000 и 10 000 м, плавание на дистанциях 800 и 1500 м, лыжные гонки и т. п.). В перечисленных и некоторых других видах спорта, где специализируемое упражнение характеризуется нагрузкой умеренной и большой мощности, общая выносливость при­близительно на 85—100% определяет спортивный результат, "поэтому он может являться довольно точным показателем уровня развития общей выносливости.

Одна из важнейших особенностей общей выносливости— способность к широкому «переносу», т. е. общая выносливость, развитая средствами беговой тренировки и проявляемая в беге, находится в большой взаимосвязи с результатами в лыжных гонках, ходьбе, стайерском беге на коньках. [29].

Считается, что общая выносливость является основой для воспитания всех остальных разновидностей проявления выносливости.

Проявление общей выносливости зависит от спортивной техники (в первую очередь — от экономичности рабочих движений) и от способности спортсмена «терпеть», т. е. противостоять наступающему утомлению путем концентрации волевых усилий.

Биологической основой общей выносливости являются аэробные возможности организма спортсмена. Основной показатель аэробных возможностей — максимальное потребление кислорода (МПК) в литрах в минуту. Чем большее количество кислорода может потребить спортсмен за единицу времени, тем большее количество энергии он может выработать, а следовательно, и большую работу выполнить. Максимальное потребление кислорода зависит от нескольких биологических факторов, важнейшими из которых являются минутный и ударный объемы сердца, частота, сердечных сокращений, скорость кровотока, жизненная емкость легких, максимальная легочная вентиляция, тканевая утилизация кислорода[23].

МПК, как правило, возрастает с ростом квалификации спортсмена и у мастеров плавания, лыжников, конькобежцев достигает значительных величин. Кстати говоря, МПК у мастеров спорта в среднем почти в два раза превышает этот показатель у спортсменов низших разрядов.

В большинстве спортивных упражнений результат в большей сте­пени зависит от специальной выносливости - способности проявлять мышечные усилия в соответствии со спецификой (продолжительностью и характером) специализированного упражнения.

Проявление специальной выносливости зависит от некоторых фи­зиологических и психических факторов. Основной физиологический фактор — анаэробные возможности спортсмена.

В самых общих чертах механизм анаэробных процессов заключается в следующем. При невысокой, субкритической, интенсивности (т. е. при работе малой и умеренной мощности) потребность организма в кислороде меньше, чем количество кислорода, поступающего в организм, т. е. кислородный запрос с избытком покрывается кислородным поступлением. При работе большой мощности наступает момент так называемой крити­ческой интенсивности, когда потребность организма в кислороде будет равна его поступлению (именно этот момент характеризуется максимальным потреблением кислорода, и совершенно очевидно, что чем выше показатель МПК, тем более высокую критическую интенсивность может развить спортсмен).

При дальнейшем повышении мощности работы, в зоне надкрити­ческой интенсивности, организму начинает недоставать поступающего кислорода, т. е. кислородный запрос начинает превышать кислородное поступление. В этих условиях некоторая часть энергии будет вырабатываться в так называемых анаэробных (бескислородных) условиях, т. е. в условиях возрастающего кислородного долга, который погашается после окончания работы[16].

Параллельно с увеличением кислородного долга, который у хорошо подготовленных спортсменов может достигать 14—18 л и даже больше, в организме происходят и другие сдвиги (накопление продуктов распада, в первую очередь молочной кислоты, изменение концентрации водородных ионов — так называемого показателя рН и т. д.). Предельныйкислородный долг, или накопившиеся до предела продукты энергетиче­ского распада, или и то и другое одновременно вынуждают спортсмена снизить мощность работы или прекратить ее полностью. Само собой разумеется, что чем выше предел упомянутых показателей, тем большую работоспособность может проявить спортсмен в зоне рассматриваемых мощностей[13].

В последние годы появилась тенденция отождествлять анаэробные возможности организма со специальной выносливостью и даже с возможно­стью достижения определенного спортивного результата. Это неверно. Ана­эробные (как, впрочем, и аэробные) возможности — это лишь показатель работоспособности, причем только с энергетической точки зрения. Работоспособность, специальная (или общая) выносливость и тем более спортивный результат зависят в не меньшей степени от подготовленности опорно-двигательного аппарата, от силы психических процессов (например, умения «терпеть»), от экономичности спортивной техники, т. е., образно го­воря, от коэффициента полезного действия, с которым используется образовавшаяся в организме в результате аэробных и анаэробных процессов энергия[19].

Таким образом, анаэробная работоспособность является лишь одной из предпосылок специальной выносливости.

Как известно, основным источником энергии при мышечной дея­тельности является расщепление аденозинтри-фосфорной кислоты (АТФ). Содержание АТФ в мышце относительно невелико и постоянно. Расходуемые запасы энергии при расщеплении АТФ должны быть немедленно восстанов­лены, иначе мышцы теряют способность к сокращению. Анаэробные возможности организма определяются двумя взаимосвязанными биохимиче­скими механизмами: креатинфосфатным (выделение энергии за счет фосфорсодержащих соединений) и гликолитическим (выделение энергии за счет расщепления гликогена мышц). В соответствии с этим и в кислородном долге, образующемся в результате анаэробной деятельности, принято различать алактатную и лактатную фракции [4].

В начале накопления кислородного долга образование энергии про­исходит в результате креатинфосфатных реакций, и эта часть кислородного долга соответственно называется алактатным кислородным долгом. Мощность этого механизма сравнительно невелика, и поэтому при продолжении работы он сменяется гликолитическим механизмом энергооб­разования, сопровождающимся накоплением лактатного кислородного долга[10].

Следует учитывать, что в большинстве видов спорта и упражнений невозможно провести четкую грань между аэробным и анаэробным компонентами работоспособности. Так, например, в лыжных гонках вся работа, казалось бы, происходит в аэробных условиях, без кислородного долга. Однако преодоление многочисленных подъемов с повышенной интенсивностью, спурты на дистанции, наконец, финишное ускорение создают в организме значительный кислородный долг, который может достигать 15—20% кислородного запроса. Следовательно, окислительные процессы частично происходят в анаэробных условиях.

Это же явление, т. е. сочетание аэробного и анаэробного компонентов, характерно для спортивных игр, единоборств и даже спортивной гимнастики.

Четкое представление об энергетической «стоимости» каждой дис­танции и каждого упражнения в «своем» виде спорта дает возможность более правильно и целенаправленно подбирать средства и методы тренировки[14].


Спортивный клуб «Магма» город Красноярск 2020 г.